A Non-Existence Result for Hamiltonian Integrators
نویسنده
چکیده
We consider the numerical simulation of Hamiltonian systems of ordinary differential equations. Two features of Hamiltonian systems are that energy is conserved along trajectories and phase space volume is preserved by the flow. We want to determine if there are integration schemes that preserve these two properties for all Hamiltonian systems, or at least for all systems in a wide class. This paper provides provides a negative result in the case of two dimensional (one degree of freedom) Hamiltonian systems, for which phase space volume is identical to area. Our main theorem shows that there are no computationally reasonable numerical integrators for which all Hamiltonian systems of one degree of freedom can be integrated while conserving both area and energy. Before proving this result we define what we mean by a computationally reasonable integrator. We then consider what obstructions this result places on the existence of volumeand energy-conserving integrators for Hamiltonian systems with an arbitrary number of degrees of freedom.
منابع مشابه
An extended complete Chebyshev system of 3 Abelian integrals related to a non-algebraic Hamiltonian system
In this paper, we study the Chebyshev property of the 3-dimentional vector space $E =langle I_0, I_1, I_2rangle$, where $I_k(h)=int_{H=h}x^ky,dx$ and $H(x,y)=frac{1}{2}y^2+frac{1}{2}(e^{-2x}+1)-e^{-x}$ is a non-algebraic Hamiltonian function. Our main result asserts that $E$ is an extended complete Chebyshev space for $hin(0,frac{1}{2})$. To this end, we use the criterion and tools developed by...
متن کاملGeometric Exponential Integrators
In this paper, we consider exponential integrators for semilinear Poisson systems. Two types of exponential integrators are constructed, one preserves the Poisson structure, and the other preserves energy. Numerical experiments for semilinear Possion systems obtained by semi-discretizing Hamiltonian PDEs are presented. These geometric exponential integrators exhibit better long time stability p...
متن کاملBackward error analysis of multiscale symplectic integrators and propagators
Symplectic integrators are used in molecular dynamics simulations for their to excellent long term behavior, due to the existence of the associated shadow Hamiltonian. Improvements in the efficiency of simulations can be obtained by the introduction of multiple timestep methods such as Verlet-I/r-RESPA, but these schemes generally require switches to separate the forces efficiently. The authors...
متن کاملReversible measure-preserving integrators for non-Hamiltonian systems.
We present a systematic method for deriving reversible measure-preserving integrators for non-Hamiltonian systems such as the Nosé-Hoover thermostat and generalized Gaussian moment thermostat (GGMT). Our approach exploits the (non-Poisson) bracket structure underlying the thermostat equations of motion. Numerical implementation for the GGMT system shows that our algorithm accurately conserves t...
متن کاملInvariant Tori of Dissipatively Perturbed Hamiltonian Systems under Symplectic Discretization
In a recent paper, Stooer showed that weakly attractive invariant tori of dissipative perturbations of integrable Hamiltonian systems persist under symplectic numerical discretizations, under a very weak restriction on the step size. Stooer's proof works directly with the discrete scheme. In this note we show how such a result, together with approximation estimates, can be obtained by combining...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006